Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate.

In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harves...

متن کامل

A flexible anisotropic self-powered piezoelectric direction sensor based on double sided ZnO nanowires configuration.

We have successfully synthesized highly dense and well aligned zinc oxide nanowires (NWs) on the two sides of a PEDOT: PSS substrate by a single step low temperature hydrothermal method. The grown sample was used to fabricate a double sided piezoelectric nanogenerator (NG). The maximum harvested output power density from the fabricated double sided NG configuration was about 4.44 mW cm(-2). The...

متن کامل

Self-powered magnetic sensor based on a triboelectric nanogenerator.

Magnetic sensors are usually based on the Hall effect or a magnetoresistive sensing mechanism. Here we demonstrate that a nanogenerator can serve as a sensor for detecting the variation of the time-dependent magnetic field. The output voltage of the sensor was found to exponentially increase with increasing magnetic field. The detection sensitivities for the change and the changing rate of magn...

متن کامل

Enhanced Performance of a ZnO Nanowire-Based Self-Powered Glucose Sensor by Piezotronic Effect

A self-powered, piezotronic effect-enhanced glucose sensor based on metalsemiconductor-metal (M–S–M) structured single ZnO nanowire device is demonstrated. A triboelectrical nanogenerator (TENG) is integrated to build a self-powered glucose monitoring system (GMS) to realize the continuously monitoring of glucose concentrations. The performance of the glucose sensor is generally enhanced by the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nanoscale Research Letters

سال: 2016

ISSN: 1931-7573,1556-276X

DOI: 10.1186/s11671-016-1373-1